会议详情


讲座主题:

Pulse-based Variational Quantum Eigensolver and Pulse-Efficient Transpilation

时间:
美东时间5月11日上午10点30到11点30

北京时间5月11日晚上10点30到11点30

Zoom Link:

https://notredame.zoom.us/j/99013211531?pwd=UW5Wa1ltTEVqY25CczRvUzNhTmQ0dz09Sign up Mail list:http://eepurl.com/h5O0Az

讲者:Dr. Daniel Egger(IBM Zurich资深研究科学家)

主题摘要

目前最先进的噪声数字量子计算机只能执行短深度的量子电路。变分算法是释放噪声量子计算机潜力的一条有希望的途径,因为相应电路的深度可以保持在硬件规定的极限以下。通常情况下,变异参数对应于虚拟的RZ门角,通过校准脉冲的相位变化实现。通过将变量参数直接编码为硬件脉冲振幅和持续时间,我们成功地进一步缩短了脉冲时间表和整个电路的持续时间。这减少了量子比特退相干和门噪声的影响。作为演示,我们将我们基于脉冲的变异算法应用于使用IBM基于交叉共振的硬件计算不同氢基分子(H2、H3和H4)的基态。我们观察到,与基于CNOT的算法相比,计划持续时间减少了5倍,同时也减少了测量能量。特别是,我们观察到,与基于CNOT的变异形式相比,H3的最小能量配置有相当大的改进。最后,我们讨论了未来可能的发展,包括错误缓解方案和进度优化,这将使我们的方法得到进一步的改进,为在噪声量子设备上模拟更大的系统铺平道路。

State-of-the-art noisy digital quantum computers can only execute short-depth quantum circuits. Variational algorithms are a promising route to unlock the potential of noisy quantum computers since the depth of the corresponding circuits can be kept well below hardware-imposed limits. Typically, the variational parameters correspond to virtual RZ gate angles, implemented by phase changes of calibrated pulses. By encoding the variational parameters directly as hardware pulse amplitudes and durations we succeed in further shortening the pulse schedule and overall circuit duration. This decreases the impact of qubit decoherence and gate noise. As a demonstration, we apply our pulse-based variational algorithm to the calculation of the ground state of different hydrogen-based molecules (H2, H3 and H4) using IBM cross-resonance-based hardware. We observe a reduction in schedule duration of up to 5× compared to CNOT-based Ansätze, while also reducing the measured energy. In particular, we observe a sizable improvement of the minimal energy configuration of H3 compared to a CNOT-based variational form. Finally, we discuss possible future developments including error mitigation schemes and schedule optimizations, which will enable further improvements of our approach paving the way towards the simulation of larger systems on noisy quantum devices.

关于讲者

Dr. Daniel Egger(IBM Zurich资深研究科学家)

Daniel J. Egger博士是一名资深研究科学家,在IBM量子、IBM欧洲研究院-苏黎世工作。他的研究重点是量子计算机的控制,将其整合到现代软件堆栈中,以及量子算法在金融、优化和自然科学中的实际应用。Egger博士于2016年加入IBM。从2014年到2016年,他在资产管理行业担任风险经理。他于2014年获得理论物理学博士学位,从事基于超导量子比特的量子模拟和量子计算机优化控制的研究。

Dr. Daniel J. Egger is a Senior Research Scientist working at IBM Quantum, IBM Research Europe – Zurich. His research focuses on the control of quantum computers, integrating them in modern software stacks, and on the practical applications of quantum algorithms in finance, optimization, and natural sciences. Dr. Egger joined IBM in 2016. From 2014 to 2016 he worked in the asset management industry as a risk manager. He earned a PhD in theoretical physics in 2014 for his work on quantum simulations and optimal control of quantum computers based on superconducting qubits.


关于ND Quantum Computing

ND Quantum Computing 是由美国圣母大学计算机科学与工程系博士生Zhiding Liang与麻省理工学院电子工程与计算机系博士生Hanrui Wang发起的量子计算系列讲座。

Quantum Computer System Lecture Seriess(QuCS)是为没有量子计算背景但对此感兴趣的观众建立基本的量子知识,同时通过邀请量子计算领域的专家来介绍该领域更先进的研究课题。

内容精品,开放于对量子计算感兴趣的志同道合的关注者。

此图片的alt属性为空;文件名为1627875055-3328eabcdf0ea81.jpg
扫码关注量子客,第一时间获取最新资讯

发表评论

后才能评论