此图片的alt属性为空;文件名为1625798919-6446d860dbbfe54.png

在阅读该页内容之前,我们向量子计算的开创者费曼和Deutsch致敬,同时向三位量子信息学的奠基人Charles H. Bennett, David Deutsch, Peter Shor表示敬意.

问题:

The Hadamard operator on one qubit may be written as $ H=\frac{1}{\sqrt{2}}[(|0\rangle+|1\rangle)\langle 0|+(|0\rangle-|1\rangle)\langle 1|] $;

Show explicitly that the Hadamard transform on $n$ $qubits$, $H^{⊗n}$, may be written as$ H^{\otimes n}=\frac{1}{\sqrt{2^{n}}} \sum_{x, y}(-1)^{x \cdot y}|x\rangle\langle y| $;

Write out an explicit matrix representation for $H^{⊗2}$;

解答

运用数学归纳法,$n=1$已由题目给出;

假设$n$的情况已知,则$n+1$的情况为$ H \otimes H^{\otimes n}=\frac{1}{\sqrt{2^{n+1}}} \sum_{x y}(-1)^{x \cdot y}(|0 x\rangle\langle 0 y|+| 1 x\rangle\langle 0 y|+| 0 x\rangle\langle 1 y|-| 1 x\rangle\langle 1 y|)= H^{\otimes n+1}$;

$H^{⊗2}= H \otimes H=\frac{1}{\sqrt{2}}\left[\begin{array}{ll}1 * H & 1 * H \\ 1 * H & -1 * H\end{array}\right]=\frac{1}{2}\left[\begin{array}{cccc}1 & 1 & 1 & 1 \\ 1 & -1 & 1 & -1 \\ 1 & 1 & -1 & -1 \\ 1 & -1 & -1 & 1\end{array}\right] $.

参考

[1]www.qtumist.com

参与者

作者:HKL, W65

贡献者:Dingyan, Wjw,Wxw

发表评论

后才能评论