此图片的alt属性为空;文件名为1625798919-6446d860dbbfe54.png

在阅读该页内容之前,我们向量子计算的开创者费曼和Deutsch致敬,同时向三位量子信息学的奠基人Charles H. Bennett, David Deutsch, Peter Shor表示敬意.

问题:

Find the eigenvectors, eigenvalues, and diagonal representations of the Pauli matrices$X$, $Y$ and $Z$.

找出泡利矩阵$X,Y,Z$的特征向量,特征值和对角表示.

解答

$X$=$\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)$,建立方程$\left|\begin{array}{cc}
0-\lambda & 1 \\
1 & 0-\lambda
\end{array}\right|=0$,

得特征值为$\lambda_{1}$=1,$\lambda_{2}$=$-1$,

对应的特征向量为$\left|v_{1}\right\rangle=\frac{1}{\sqrt{2}}\left(\begin{array}{l}1 \\ 1\end{array}\right),\left|v_{2}\right\rangle=\frac{1}{\sqrt{2}}\left(\begin{array}{c}1 \\ -1\end{array}\right).$

对角表示为$X=\frac{1}{2}\left(\begin{array}{l}1 \\ 1\end{array}\right)\left(\begin{array}{ll}1 & 1\end{array}\right)-\frac{1}{2}\left(\begin{array}{l}1 \\ -1\end{array}\right)\left(\begin{array}{ll}1 & -1\end{array}\right).$

$Y$=$\left(\begin{array}{ll}
0 & -i \\
i & 0
\end{array}\right)$,建立方程$\left|\begin{array}{cc}
0-\lambda & -i \\
i & 0-\lambda
\end{array}\right|=0$,

得特征值为$\lambda_{1}$=$1$,$\lambda_{2}$=$-1$,

对应的特征向量为$\left|v_{1}\right\rangle=\frac{1}{\sqrt{2}}\left(\begin{array}{l}1 \\ i\end{array}\right),\left|v_{2}\right\rangle=\frac{1}{\sqrt{2}}\left(\begin{array}{c}1 \\ -i\end{array}\right).$

对角表示为$Y=\frac{1}{2}\left(\begin{array}{l}1 \\ i\end{array}\right)\left(\begin{array}{ll}1 & -i\end{array}\right)-\frac{1}{2}\left(\begin{array}{l}1 \\ -i\end{array}\right)\left(\begin{array}{ll}1 & i\end{array}\right).$

$Z$=$\left(\begin{array}{ll}
1 & 0 \\
0 & -1
\end{array}\right)$,建立方程$\left|\begin{array}{cc}
1-\lambda & 0 \\
0 & -1-\lambda
\end{array}\right|=0$,

得特征值为$\lambda_{1}$=1,$\lambda_{2}$=-1,

对应的特征向量为$\left|v_{1}\right\rangle=\left(\begin{array}{l}1 \\ 0\end{array}\right),\left|v_{2}\right\rangle=\left(\begin{array}{l}0 \\ 1\end{array}\right)$

对角表示为$Z=\left(\begin{array}{l}1 \\ 0\end{array}\right)(1 \ 0)-\left(\begin{array}{l}0 \\ 1\end{array}\right)(0 \ 1).$

参考

[1]www.qtumist.com

参与者

作者:HKL, W65

贡献者:Dingyan, Wjw,Wxw

发表评论

后才能评论