此图片的alt属性为空;文件名为1625798919-6446d860dbbfe54.png

在阅读该页内容之前,我们向量子计算的开创者费曼和Deutsch致敬,同时向三位量子信息学的奠基人Charles H. Bennett, David Deutsch, Peter Shor表示敬意.

问题:

Verify that $(·, ·)$ just defined is an inner product on $C^n$.

证明 $(·, ·)$是定义在空间$C^n$上的內积操作

解答

令空间$C^n$上的两个向量分别为$$\left|v\right\rangle=(v_{1},v_{2},…..,v_{n}),$$$$\left|w\right\rangle=(w_{1},w_{2},…..,w_{n}),$$

有$$(\left|v\right\rangle,\left|w\right\rangle)=v_{1}^{*} w_{1}+v_{2}^{*} w_{2}+\cdots+v_{n}^{*} w_{n}.$$

下面证明这个式子满足內积的三条定义:

1.由数学归纳的知识,这里只证明$i=2$的简单情况,

$$\left(\left|v_{1}\right\rangle, \lambda_{1}\left|w_{1}\right\rangle+\lambda_{2}\left|w_{2}\right\rangle\right)=\sum v_{i}^{*}\left(\lambda_{1} w_{1i}+\lambda_{2} w_{2 i}\right).$$

$$\lambda_{1}\left(|v\rangle,\left|w_{1}\right\rangle\right)+\lambda_{2}\left(|v\rangle,\left|w_{2}\right\rangle\right)=\sum v_{i}^{} \lambda_{1} w_{1 i}+\sum v_{i}^{} \lambda_{2} w_{2 i}.$$

故$$\left(\left|v_{1}\right\rangle, \lambda_{1}\left|w_{1}\right\rangle+\lambda_{2}\left|w_{2}\right\rangle\right)=\lambda_{1}\left(|v\rangle,\left|w_{1}\right\rangle\right)+\lambda_{2}\left(|v\rangle,\left|w_{2}\right\rangle\right).$$

2.$$(\left|v\right\rangle,\left|w\right\rangle)=v_{1}^{*} w_{1}+v_{2}^{*} w_{2}+\cdots+v_{n}^{*} w_{n}.$$

$$(|w\rangle,|v\rangle)=w_{1}^{*} v_{1}+w_{2}^{*} v_{2}+\cdots+w_{n}^{*} v_{n};$$

故$$(\left|v\right\rangle,\left|w\right\rangle)=(|w\rangle,|v\rangle)^{*}.$$

3.$$(\left|v\right\rangle,\left|v\right\rangle)=v_{1}^{*} v_{1}+v_{2}^{*} v_{2}+\cdots+v_{n}^{*} v_{n}=\left|v_{1}\right|^{2}+\left|v_{2}\right|^{2}+\cdots+\left|v_{n}\right|^{2}.$$

故$(\left|v\right\rangle,\left|v\right\rangle)\geq0$,当取等号时,$v_{1}=v_{2}=……=v_{n}=0$,即$\left|v\right\rangle=(0,0,…..,0)=O.$

参考

[1]www.qtumist.com

参与者

作者: HKL, W65

贡献者: Dingyan, Wjw,Wxw

发表评论

后才能评论