
在阅读该页内容之前,我们向量子计算的开创者费曼和Deutsch致敬,同时向三位量子信息学的奠基人Charles H. Bennett, David Deutsch, Peter Shor表示敬意.
问题:
Suppose $ V$ is a vector space with basis vectors $|0\rangle$ and $|1\rangle$,and $A$ is a linear operator from $ V$ to $V $ such that $A|0\rangle=|1\rangle$ and $A|1\rangle=|0\rangle$. Give a matrix representation for $A$,with respect to the input basis $|0\rangle,|1\rangle$ , and the output basis$|0\rangle,|1\rangle$. Find input and output bases which give rise to a different matrix representation of $A$.
令$V$是含有基向量$|0\rangle$ 和$|1\rangle$ 的向量空间,$A$是从空间$V$ 到空间$V$ 的一个线性算子, $A|0\rangle=|1\rangle ,A\rangle =|0\rangle$.给出输入基是$|0\rangle$ 和$|1\rangle$ ,输出基是$|0\rangle,|1\rangle$的矩阵;给定一个不同的矩阵,表示出输入基和输出基.
解答:
算子表达式为\begin{array}{l}
A|0\rangle=0|0\rangle+1|1\rangle \\A|1\rangle=1|0\rangle+0|1\rangle
\end{array}
故矩阵表示为$\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)$.
当给定一个矩阵表示为$\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)$时,对输入基$|0\rangle$和$|1\rangle$而言,输出基是$(a+c)|0\rangle$和$(b+d)|1\rangle$.
参考
[1]www.qtumist.com
参与者
作者:HKL, W65
贡献者:Dingyan, Wjw,Wxw